Chapter 5: Field–Effect Transistors

Robert Boylestad Digital Electronics

©2004 by Pearson Education

Slide 1

FET

FET's (Field - Effect Transistors) are much like BJT's (Bipolar Junction Transistors).

Similarities:

- Amplifiers
- · Switching devices
- Impedance matching circuits

Differences:

- FET's are voltage controlled devices whereas BJT's are current controlled devices.
- FET's also have a higher input impedance, but BJT's have higher gains.
- FET's are less sensitive to temperature variations and because of there construction they are more easily integrated on IC's.
- FET's are also generally more static sensitive than BJT's.

FET Types

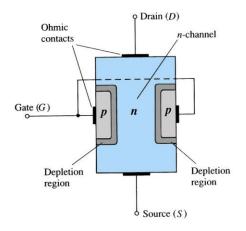
• JFET ~ Junction Field-Effect Transistor

• **MOSFET** ~ Metal-Oxide Field-Effect Transistor

- **D-MOSFET** ~ Depletion MOSFET

- **E-MOSFET** \sim Enhancement MOSFET

Robert Boylestad Digital Electronics


Slide 2

©2004 by Pearson Education

Slide 3

JFET Construction

There are two types of JFET's: n-channel and p-channel. The n-channel is more widely used.

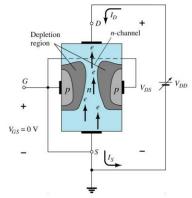
 There are three terminals: Drain (D) and Source (S) are connected to n-channel

 Robert Boylestad

 Digital Electronics
 C2004 by Pearson Education

Basic Operation of JFET

JFET operation can be compared to a water spigot:



The source of water pressure – accumulated electrons at the negative pole of the applied voltage from Drain to Source The drain of water – electron deficiency (or holes) at the positive pole of the applied voltage from Drain to Source. The control of flow of water – Gate voltage that controls the width of the n-channel, which in turn controls the flow of electrons in the n-channel from source to drain. Robert Boylestad Digital Electronics (2004 by Person Education (2004 by Person (2004 by Person Education (2004 by Person (2004 by Person Education (2004 by Person (2004 by P

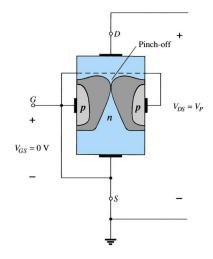
Slide 5 JFET Operating Characteristics

There are three basic operating conditions for a JFET:

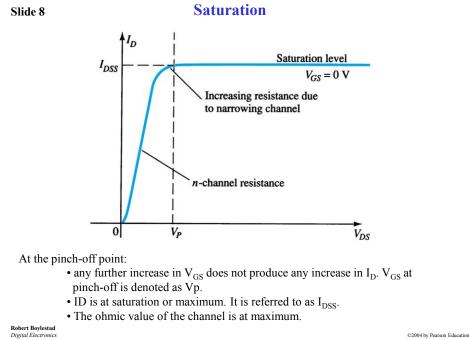
- A. $V_{GS} = 0$, V_{DS} increasing to some positive value
- B. $V_{GS} < 0$, V_{DS} at some positive value
- C. Voltage-Controlled Resistor

Slide 6 A. $V_{GS} = 0$, V_{DS} increasing to some positive value

Three things happen when $V_{GS} = 0$ and V_{DS} is increased from 0 to a more positive voltage:

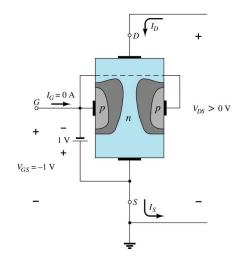

- the depletion region between p-gate and n-channel increases as electrons from n-channel combine with holes from p-gate.
- increasing the depletion region, decreases the size of the n-channel which increases the resistance of the n-channel.
- But even though the n-channel resistance is increasing, the current (I_D) from
- Source to Drain through the n-channel is increasing. This is because V_{DS} is increasing.

Robert Boylestad Digital Electronics


©2004 by Pearson Education

Slide 7

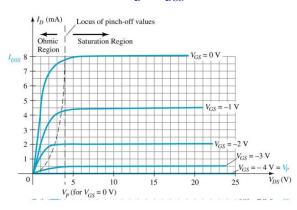
Pinch-off


If $V_{GS} = 0$ and V_{DS} is further increased to a more positive voltage, then the depletion zone gets so large that it *pinches off* the n-channel. This suggests that the current in the n-channel (I_D) would drop to 0A, but it does just the opposite: as V_{DS} increases, so does I_D. **Robert Boylestad Robert Boylestad** (2004 by Pearson Education

Robert Boylestad Digital Electronics

Slide 9

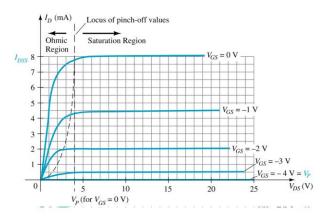
B. $V_{GS} < 0$, V_{DS} at some positive value



As V_{GS} becomes more negative the depletion region increases.

Robert Boylestad Digital Electronics

As V_{GS} becomes more negative:


- the JFET will pinch-off at a lower voltage (Vp).
- I_D decreases ($I_D < I_{DSS}$) even though V_{DS} is increased.
- Eventually I_D will reach 0A. V_{GS} at this point is called Vp or $V_{GS(off)}$.
- Also note that at high levels of V_{DS} the JFET reaches a breakdown situation.
- ID will increases uncontrollably if $V_{DS} > V_{DSmax}$.

Robert Boylestad Digital Electronics

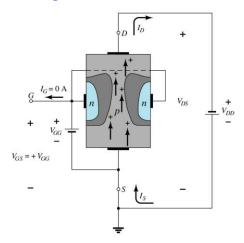
©2004 by Pearson Education

Slide 11

C. Voltage-Controlled Resistor

The region to the left of the pinch-off point is called the *ohmic region*. The JFET can be used as a variable resistor, where VGS controls the drain-source resistance (rd). As V_{GS} becomes more negative, the resistance (rd) increases.

$$=\frac{\mathbf{r}_{o}}{(1-\mathbf{V}_{GS}/\mathbf{V}_{P})^{2}}$$


rd

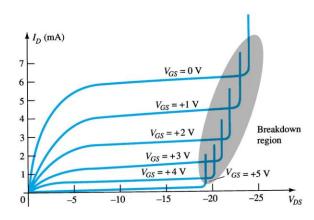
Robert Boylestad Digital Electronics

©2004 by Pearson Education

[Formula 5.1]

p-Channel JFETS

p-Channel JFET acts the same as the n-channel JFET, except the polarities and currents are reversed.


Robert Boylestad Digital Electronics

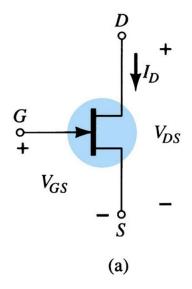
Slide 12

©2004 by Pearson Education

Slide 13

P-Channel JFET Characteristics

As VGS increases more positively:


• the depletion zone increases

- I_D decreases $(I_D < I_{DSS})$ eventually $I_D = 0A$

Also note that at high levels of VDS the JFET reaches a breakdown situation. ID increases uncontrollably if $V_{DS} > V_{DSmax}$.

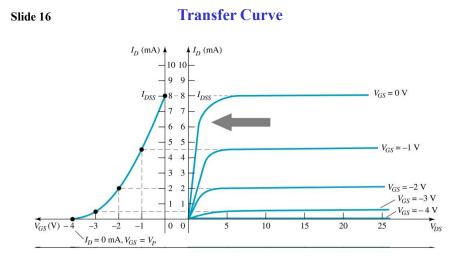
Robert Boylestad Digital Electronics

JFET Symbols

Robert Boylestad Digital Electronics

©2004 by Pearson Education

Slide 15 Transfer Characteristics


The transfer characteristic of input-to-output is not as straight forward in a JFET as it was in a BJT.

In a BJT, β indicated the relationship between I_B (input) and I_C (output).

In a JFET, the relationship of V_{GS} (input) and $I_{\rm D}$ (output) is a little more complicated:

$$I_D = I_{DSS} (1 - \frac{V_{GS}}{V_P})^2$$
 [Formula 5.3]

Robert Boylestad Digital Electronics

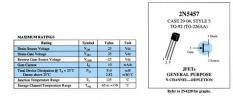
From this graph it is easy to determine the value of I_D for a given value of V_{GS}.

Robert Boylestad Digital Electronics

©2004 by Pearson Education

Slide 17 Plotting the Transfer Curve

Using I_{DSS} and Vp (V_{GS(off)}) values found in a specification sheet, the Transfer Curve can be plotted using these 3 steps:


Step 1:
$$I_D = I_{DSS}(1 - \frac{V_{GS}}{V_P})^2$$
[Formula 5.3]Solving for $V_{GS} = 0V$: $I_D = I_{DSS} / V_{GS} = 0V$ [Formula 5.4]Step 2: $I_D = I_{DSS}(1 - \frac{V_{GS}}{V_P})^2$ [Formula 5.3]Solving for $V_{GS} = Vp (V_{GS(off)})$: $I_D = 0A / V_{GS} = V_P$ [Formula 5.5]Step 2: $I_D = 0A / V_{GS} = V_P$ [Formula 5.5]

Step 3:

Solving for
$$V_{GS} = 0V$$
 to Vp: $I_D = I_{DSS} (1 - \frac{V_{GS}}{V_P})^2$ [Formula 5.3]

Robert Boylestad Digital Electronics

Specification Sheet (JFETs)

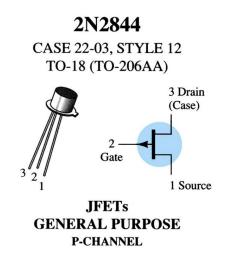
ELECTRICAL CHARACTERISTICS (T_A = 25 C unless otherwise noted) Characteristic Symbol Min Typ Max Unit

OFF CHARACTERISTICS						
Gate-Source Breakdown Voltage $(I_G = -10 \ \mu Adc, V_{DS} = 0)$		V _{(BR)GSS}	25			Vdc
$ \begin{array}{l} \mbox{Gate Reverse Current} \\ (V_{GS} = -15 \mbox{ Vdc}, V_{DS} = 0) \\ (V_{GS} = -15 \mbox{ Vdc}, V_{DS} = 0, T_A = 100^{\circ} \mbox{C}) \end{array} $		1 _{GSS}	÷	-	-1.0 -200	nAdc
Gate Source Cutoff Voltage (V _{DS} = 15 Vdc, I _D = 10 nAdc)	2N5457	V _{OS(off)}	-0.5	-	-6.0	Vdc
Gate Source Voltage (Vrs = 15 Vdc, In = 100 µAdc)	2N5457	V _{GS}	-	-2.5	-	Vdc

5.0 mAdc

Zero-Gate-Voltage Drain Current* (V _{DS} = 15 Vdc, V _{GS} = 0)	2N5457	IDSS	1.0	3.0	T
SMALL-SIGNAL CHARACTERISTICS					

Forward Transfer Admittance Common Source* (V _{DS} = 15 Vdc, V _{OS} = 0, f = 1.0 kHz) 2N5457	lynl	1000	-	5000	µmhos
Output Admintance Common Source* (V _{DS} = 15 Vdc, V _{OS} = 0, f = 1.0 kHz)	lYeal		10	50	jumhos
Input Capacitance (V _{DS} = 15 Vdc, V _{OS} = 0, f = 1.0 MHz)	Cas		4.5	7.0	pF
Reverse Transfer Capacitance (V _{DS} = 15 Vdc, V _{QS} = 0, f = 1.0 MHz)	Cns	12	1.5	3.0	pF
Balas Tara Balas Webb of Killings Date Code of 1981				-	


*Pulse Test: Pulse Width 5 630 ms; Duty

Robert Boylestad Digital Electronics

Slide 18

©2004 by Pearson Education

Slide 19 Case Construction and Terminal Identification

This information is also available on the specification sheet.

Slide 20 Testing JFET

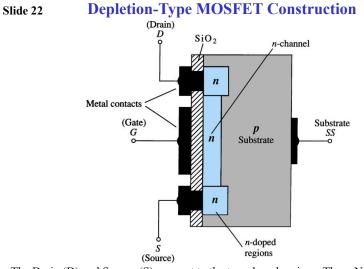
a. Curve Tracer - This will display the ID versus VDS graph for various levels of VGS.

b. Specialized FET Testers - These will indicate IDSS for JFETs.

Robert Boylestad Digital Electronics

©2004 by Pearson Education

Slide 21

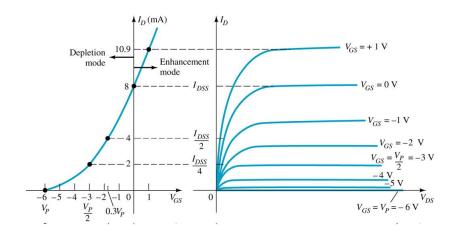

MOSFETs

MOSFETs have characteristics similar to JFETs and additional characteristics that make then very useful.

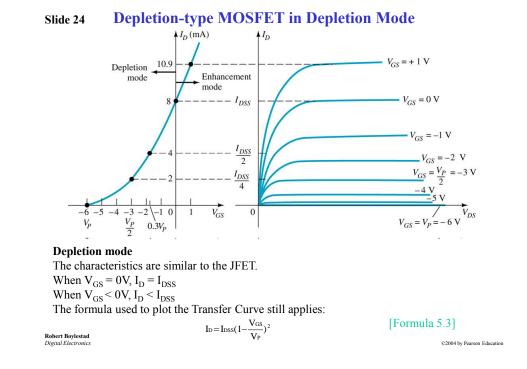
There are 2 types:

• Depletion-Type MOSFET

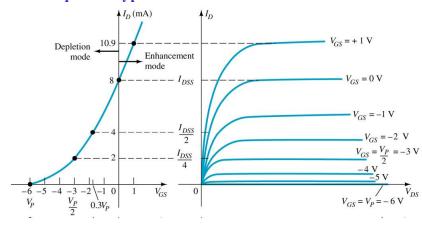
• Enhancement-Type MOSFET


The Drain (D) and Source (S) connect to the to n-doped regions. These N-doped regions are connected via an n-channel. This n-channel is connected to the Gate (G) via a thin insulating layer of SiO₂. The n-doped material lies on a p-doped substrate that may have an additional terminal connection called SS. Robert Boylestad Digital Electronics

©2004 by Pearson Education

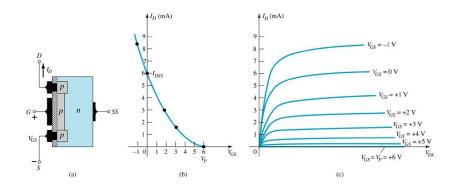

Slide 23

Basic Operation


A Depletion MOSFET can operate in two modes: Depletion or Enhancement mode.

Robert Boylestad Digital Electronics

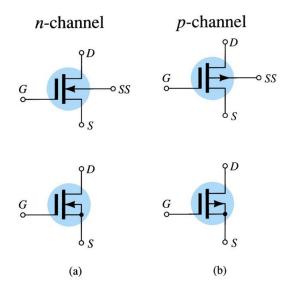
Slide 25 Depletion-type MOSFET in Enhancement Mode



Enhancement mode

 $I_{D} = I_{DSS}(1 - \frac{V_{GS}}{V_{P}})^{2} \left[Formula 5.3\right]$

p-Channel Depletion-Type MOSFET


The p-channel Depletion-type MOSFET is similar to the n-channel except that the voltage polarities and current directions are reversed.

Robert Boylestad Digital Electronics

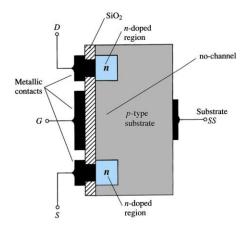
©2004 by Pearson Education

Slide 27

Symbols

Robert Boylestad Digital Electronics

Specification Sheet

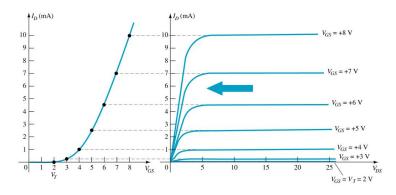

MAXIMUM RATINGS					CASE	2N379 22-03, 9 18 (TO-2	STYLE 2	
Rating	Symbol	Value	Unit	1	11	Gate	(F)	
Drain-Source Voltage 2N3797	Vis	20	Vdc	,	11	20-	1	
Gate-Source Voltage	VGS	±10	Vdc				15	OUTOP
Deain Current	Ip	20	mAdc			MOSFE	Ts	
Total Device Dissipation @ T _A = 25°C Derate above 25°C	Po	200 1.14	mW/mW/°C			POWER		0
Junction Temperature Range	TJ	+175	°C	1	N-CHA?	NEL - D	EPLETIC	N
Storage Charnel Temperature Range	Teg	-65 to +200	°C.		100000	1.1005-1.55	0.0102000	
ELECTRICAL CHARACTERISTICS		unless otherwise	e noted)					
Chu	racteristic			Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS								
Drain Source Breakdown Voltage (V _{GS} = -7.0 V, I _D = 5.0 µA)			N3797	V _{IBREAX}	20	25	-	Vdc
Gate Reverse Current (1) $(V_{CS} = -10 \text{ V}, V_{DS} = 0)$ $(V_{CS} = -10 \text{ V}, V_{DS} = 0, T_A = 150^{\circ}\text{C})$				leas	0	5	1.0 200	p.4.6
Gate Source Cutoff Voltage (ID = 2.0 µA, VDS = 10 V)			IN3797	V _{GS(eff)}		-5.0	-7.0	Vdc
Deain-Gate Reverse Current (1) (V _{DG} = 10 V, I _S = 0)				1000	2	100	1.0	pAd
ON CHARACTERISTICS						()		0
Zero-Gase-Voltage Drain Current (V _{ES} = 10 V, V _{GS} = 0)			N3797	loss	2.0	2.9	6.0	mAd
On-State Drain Current (V _{DS} = 10 V, V _{OS} = +3.5 V)				I _{Dire}				mAd
$(v_{DS} = 10 v, v_{OS} = 43.3 v)$			N3797		9.0	14	18	
SMALL-SIGNAL CHARACTERISTIC	8							-
Forward Transfer Admittance				1961				µmba
$(V_{CS} = 10 \text{ V}, V_{CS} = 0, f = 1.0 \text{ kHz})$			N3797		1500	2300	3000	
$(V_{\rm US}=10~V,~V_{\rm GS}=0,~f=1.0~{\rm MHz})$		-	N3797		1500			
Output Admittance (I _{DS} = 10 V, V _{GS} = 0, f = 1.0 kHz)			N1797	17ml		27	60	μnb
				Can	-	-/		pF
Input Capacitance $(V_{DS}=10~V,~V_{GS}=0,~f=1.0~MHz)$			N3797	- ma		6.0	8.0	pr
Reverse Transfer Capacitance (V _{DS} = 10 V, V _{OS} = 0, f = 1.0 MHz)				Cent	-	0.5	0.8	pF
FUNCTIONAL CHARACTERISTICS								
Noise Figure (V _{DS} = 10 V, V _{DS} = 0, f = 1.0 kHz, R,	- 3 mopola	141		NF	10	3.8	-	dB

Robert Boylestad Digital Electronics

Slide 28

©2004 by Pearson Education

Slide 29 Enhancement-Type MOSFET Construction

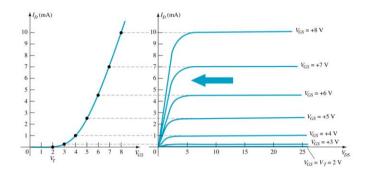


The Drain (D) and Source (S) connect to the to n-doped regions. These n-doped regions are connected via an n-channel. The Gate (G) connects to the p-doped substrate via a thin insulating layer of SiO_2 . There is no channel. The n-doped material lies on a p-doped substrate that may have an additional terminal connection called SS.

Robert Boylestad Digital Electronics

Basic Operation

The Enhancement-type MOSFET only operates in the enhancement mode.



 $\begin{array}{l} V_{GS} \text{ is always positive} \\ \text{As } V_{GS} \text{ increases, } I_{D} \text{ increases} \\ \text{But if } V_{GS} \text{ is kept constant and } V_{DS} \text{ is increased, then } I_{D} \text{ saturates } (I_{DSS}) \\ \text{The saturation level, } V_{DSsat} \text{ is reached.} \\ V_{Dsat} = V_{GS} - V_{T} \qquad \text{[Formula 5.12]} \end{array}$

Robert Boylestad Digital Electronics

Slide 31

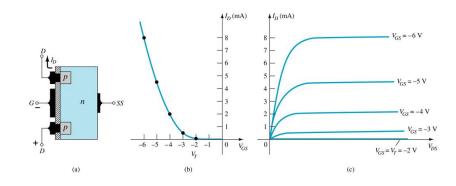
Transfer Curve

To determine I_D given V_{GS} : $I_D = k(V_{GS} - V_T)^2$ [Formula 5.13] where V_T = threshold voltage or voltage at which the MOSFET turns on. k = constant found in the specification sheet k can also be determined by using values at a specific point and the formula:

$$k = \frac{I_{D(on)}}{(V_{GS(ON)} - V_T)^2}$$
[Formula 5.14]

V_{DSsat} can also be calculated:

$$V_{Dsat} = V_{GS} - V_T$$

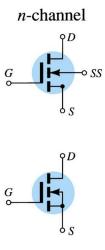

Robert Boylestad Digital Electronics

©2004 by Pearson Education

[Formula 5.12]

Slide 32 p-Channel Enhancement-Type MOSFETs

The p-channel Enhancement-type MOSFET is similar to the n-channel except that the voltage polarities and current directions are reversed.



Robert Boylestad Digital Electronics

©2004 by Pearson Education

Slide 33

Symbols

(a)

Robert Boylestad Digital Electronics

Specification Sheet

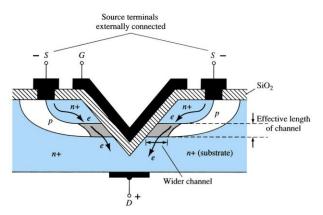
MAXIMUM RATINGS				2N4351 CASE 20-03, STYLE 2 TO-72 (TO-206AF)				
Rating	Symbol	Value	Unit	d a		3 Drai	1	
Drain-Source Voltage	Vos	25	Vdc	1		-		
Drain-Gate Voltage	Vno	30	Vdc	1	2	lin -	- 4	
Gate-Source Voltage*	V _{GS}	30	Vdc	//	Gate	- P	Case	
Drain Current	ID	30	mAdc	12/1		1		
Total Device Dissipation @ T _A = 25°C Derate above 25°C		300 1.7	mW mW/C	3 '4i M	OSFET	1 Sour	ce.	
Junction Temperature Range	Ti	175	°C.	SWI	TCHIN	G		
Storage Temperature Range	Tut	-65 to +175	'C	N-CHANNEL	- ENHAL	NCEMEN	a c	
ELECTRICAL CHARACTERISTIC	CS (T _A = 25°C) Tharacteristic	anless otherwis	e noted.)	Symbol	Min	Max	Unit	
Drain-Source Breakdown Voltage (I _D = 10 µA, V _{GS} = 0)				V _{(BR)DSX}	25	-	Vdc	
Zero-Gate-Voltage Drain Current (V _{DS} = 10 V, V _{GS} = 0) T _A = 25°C T _A = 150°C	loss	-	10 10	nAde µAde				
Gate Reverse Carrent (V _{GS} = ± 15 Vdc, V _{DS} = 0)				l _{ass}	-	± 10	pAde	
ON CHARACTERISTICS							_	
Gate Threshold Voltage (V _{DS} = 10 V, I _D = 10 µA)				V _{GS(Th)}	1.0	5	Vdc	
Drain-Source On-Voltage (I _D = 2.0 mA, V ₆₈ = 10V)				V _{EG(m)}	1	1.0	v	
On-State Drain Current (V _{GS} = 10 V, V _{DS} = 10 V)				I _{D(ot)}	3.0	-	mAd	
SMALL-SIGNAL CHARACTERIS	rics							
Forward Transfer Admittance (V _{DS} = 10 V, I _D = 2.0 mA, f = 1.0	kHz)			y _{fs}	1000	-	pamba	
Input Capacitance (V _{DS} = 10 V, V _{GS} = 0, f = 140 kH	z)			Cisa	(0)	5.0	pF	
Reverse Transfer Capacitance (V _{DS} = 0, V _{GS} = 0, f = 140 kHz)		-		C _{ns}	100	1.3	pF	
Drain-Substrate Capacitance (V _{D(S)(B)} = 10 V, f = 140 kHz)				C _{d(sub)}	-	5.0	pF	
Drain-Source Resistance (V _{GS} = 10 V, I _D = 0, f = 1.0 kHz)				Edu(on)	~	300	ohme	
SWITCHING CHARACTERISTIC:	\$							
Turn-On Delay (Fig. 5)				Li I	-	45	IIS	
	mAdc, V _{DS} = 1	0 Vdc,		L,	-	65	ns	
Turn-Off Delay (Fig. 7) (V _{GS} = 1 (See Fig.	0 Vdc) are 9; Times Ci	cuit Determine	1	La2	-	60	ns	
Fall Time (Fig. 8)	av a cases ca	con column		t.		100	05	

Robert Boylestad Digital Electronics

©2004 by Pearson Education

Slide 35

MOSFET Handling


MOSFETs are very static sensitive. Because of the very thin SiO_2 layer between the external terminals and the layers of the device, any small electrical discharge can stablish an unwanted conduction.

Protection:

- Always transport in a static sensitive bag
- Always wear a static strap when handling MOSFETS
- Apply voltage limiting devices between the Gate and Source, such as back-toback Zeners to limit any transient voltage.

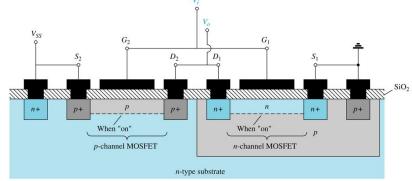
VMOS

Slide 36

VMOS - Vertical MOSFET increases the surface area of the device.

Advantage:

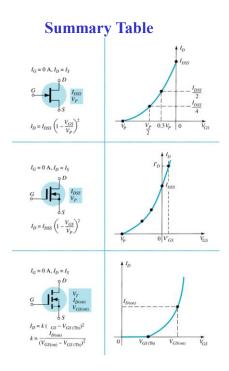
- This allows the device to handle higher currents by providing it more surface area to dissipate the heat.
- VMOSs also have faster switching times.


Robert Boylestad Digital Electronics

©2004 by Pearson Education

Slide 37

CMOS


CMOS – Complementary MOSFET p-channel and n-channel MOSFET on the same substrate.

Advantage:

- Useful in logic circuit designs
- Higher input impedance
- Faster switching speeds
- Lower operating power levels

Robert Boylestad Digital Electronics

©2004 by Pearson Education

Robert Boylestad Digital Electronics

Slide 38